Social Constructions IV—Process In Time Vs. Correspondence With Process Backgrounded

PROCESS IN TIME VS. CORRESPONDENCE WITH PROCESS BACKGROUNDED

The preceding discussion of co-construction vs. separate things being constructed has, at many points, drawn on science being seen as a process in time.  Let me explore further the implications of this perspective.

In describing his second constructivism, the one closest to his basic realist sensibility, Sismondo employs the image of construction of a geometric proof.  Geometric construction, however, involves not just a static arrangement of fixed points (as Sismondo describes the idea), but steps, each building on the previous ones, to achieve the proof.  When we downplay the associations construction has with a process over time we are more easily pressed to answer the static question of what, ‘after all is said and done,’ scientific knowledge corresponds to.  Sismondo, for example, in supporting some version of realism, argues that, if theoretical ‘assumptions were not sometimes approximately true [did not map reality] then it would be extremely difficult to understand how scientists achieve the pragmatic successes they do.’[i]   He considers this a strong argument by itself (as do leading realist philosophers[ii]).  From the perspective that science is co-constructed, however, the argument lacks a crucial component: what the practices of agents in real time are through which (approximate) truth leads to the pragmatic success (or lack of truth to failure).[iii]  In contrast, studies of co-constructional processes generally draw attention to the diverse practices of agents in the process of science in the making, and avoid tracing pragmatic success back to truth.  So, although some established theoretical assumptions could be true, the contribution of any of these assumptions to the process of co-construction is difficult to separate; it remains contingent on how the other components are linked in the production of the success.

When philosophers do address the issue of process, they usually invoke or imply some evolutionary scheme in which ideas that map reality best will best survive through experimental tests and disputes over correct interpretations.  But what do scientists do in this scheme — surely not vary their ideas randomly like genetic mutations?  What are the processes through which agents can bring about this “survival of the realest?”  Without such details evolutionary schemes tend to collapse to a tautology of conceiving realest as those surviving at any given point of time, or, at best, the schemes have to stress the current function (realness) of ideas, as if a history of the ideas surviving because they were realer can be inferred from the current function alone.

Philosophers are by no means alone in backgrounding process or relying on notions of correspondence.  A formulation of social constructivism, more common in talk than writing, holds that if knowledge is not given by Nature, it must be given by Society — or, with similar effect, by historical context, class structure, social location, social interests, ‘form of life,’[iv] or membership in a ‘relevant social group.’[v]   Construction evokes an image in which Society, external to science, determines, penetrates, or is reflected in the content of accepted scientific theories.[vi]  The resulting science then corresponds to the Society in which it is generated or accepted.  Admittedly, most published work is more subtle.  The literature generally presents the society-science relationship as refracted, allowing for the observation that not all of social group X believe Y and not all believers of Y come from social group X.  Scientists (and others) should not, in this view, be seen as ciphers for society or dupes for interests.  Instead, for example, they are described as producing and judging knowledge according to how it furthers goals (over and above establishing knowledge) of their social group (Shapin’s “instrumental model” of sociology/ sociological history of scientific knowledge[vii]).  While process and practice seem to be in the foreground, construction in the simpler correspondence sense has not been banished in such accounts.  If one asks how they explain why this knowledge was accepted and not that, and how this knowledge was generated in the first place, the implicit explanatory structure is more often than not one of correspondence between knowledge and interests.[viii]

CONCLUSION

The directions co-constructivism point us may not be to everyone’s liking.  For many scholars reduction of complexity and some backgrounding of on-going process would seem to be necessary if they are to say anything clear, systematic, general or useful about science.  Although I recognise that there is a lot more work to be done defining, developing and establishing co-constructivism than this note could accomplish, I disagree with the assumption or pre-judgement that such a project is unworkable.  In fact, the challenges of co-constructivism seem difficult to avoid once we ask the question: What does it mean practically for agents to modify scientific activity?  The terms just highlighted conjure an image of construction as a process of agents building  by combining a diversity of components (as in people building or remodelling a house).  So, given that the question captures in very broad outline the project of science studies, let us highlight the building sense of construction and weed out the persistent idea that science reflects or corresponds to something.  Any scientific product is part of a complex achievement; science as it is being made is being co-constructed.  In this light, the metaphor of construction can yet be productive of theory, method, challenging questions, and new perspectives on long-standing debates.


[i]  S2, p. 565

[ii]  R. Boyd, ‘On the current status of scientific realism’, in R. Boyd, P. Gasper, and J. D. Trout (ed.), The philosophy of science  (Cambridge, MA: MIT Press, 1991), 195-222.  See p. 207.

[iii]  See D. Hull, Science as a process: An evolutionary account of the social and conceptual development of science Chicago: University of Chicago Press, 1988).  For a relevant critique of natural selective explanations even in biology see P. Taylor, ‘Historical versus selectionist explanations in evolutionary biology’, Cladistics , Vol. 3 No. 2 (1987), 1-13.

[iv]  H. M. Collins and T. J. Pinch, Frames of meaning: The social construction of extraordinary science . (London: Routledge & Kegan Paul, 1982).

[v]  T. Pinch and W. Bijker, ‘The social construction of facts and artefacts; or how the sociology of science and the sociology of technology might benefit each other’, Social Studies of Science , Vol. 14 (1984), 399-441.  See also P. Rosen, ‘The social construction of mountain bikes’, Social Studies of Science , Vol. 23 (1993), 479-513.

[vi]   See the diagrams in N. Wise, ‘Mediating machines’, Science in Context , Vol. 2 No. 1 (1988), 77-113.

[vii]   S. Shapin, ‘History of science and its sociological reconstructions’, History of Science , Vol. xx (1982), 157-211.

[viii]   S. Woolgar, ‘Interests and explanation in the social study of science’, Social Studies of Science , Vol. 11 (1981), 365-394; A. Pickering, ‘The mangle of practice: Agency and emergence in the sociology of science’, American Journal of Sociology , Vol. 99 No. 3 (1993), 559-589

Advertisements

One thought on “Social Constructions IV—Process In Time Vs. Correspondence With Process Backgrounded

  1. Pingback: Social Constructions III — Co-Construction Vs. Separateness « Intersecting Processes

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s