Mapping: Can scientists become interpreters of science and bring the interpretations to bear on their science?

According to the perspective of heterogeneous construction, scientists mobilize a diversity of resources and, in so doing, engage with a range of social agents.  Similarly, when interpreters of science delimit the relevant resources and agents, they also mobilize resources and engage with diverse social agents (Taylor 2005, Chapter 5, section A). Interpreters of science who recognize this might then reflect explicitly on the practical conditions that enable them to build and gain support for their interpretations. Applying the same interpretive framework to one’s own research should enhance the plausibility of their reconstructions of the work of scientists.
There might be more direct way that heterogeneous constructionist interpretation might influence science productively. Instead of relying on some second party to do the reconstruction, could scientists—or indeed any researchers—interpret their own heterogeneous webs? Could researchers reflect explicitly on how their own social embeddedness or situatedness affects their ability to study the situations that interest them? Could they attempt to identify multiple potential sites of engagement and change for themselves? If so, this would cut through some of complexities arising from interpreters trying to model practical reflexivity.

Mapping, Map-makers, and Maps

To explore this possibility with a number of ecologists and natural resource researchers, I convened two “mapping workshops”—the first in Helsinki, co-led with ecologist-philosopher Yrjö Haila; the second in Berkeley. These workshops were designed to proceed as follows. Each researcher would focus on a key issue—a question, dispute, or action in which the researcher was strongly motivated to know more or act more effectively. All researchers would identify “connections”—things that motivated, facilitated, or constrained their inquiry and action. These might include theoretical themes, empirical regularities, methodological tactics, organisms, events, localities, agents, institutional facilities, disputes, debates, and so on. Researchers would then draw their “maps”—pictorial depictions employing conventions of size, spatial arrangement, and perhaps color that allow many connections to be viewed simultaneously. The map metaphor was meant to connote not a scaled-down representation of reality but a device that shows the way—a guide for further inquiry or action (Taylor and Haila 1989; Taylor 1990).
Over a series of sessions the workshop participants would present these maps and be questioned by other participants. As a result they might clarify and filter the connections and reorganize their maps so as to indicate which connections were actually significant resources. The ideal was that researchers would self-consciously modify their social situations and their research together, perhaps in collaborations formed among the workshop participants. Of course, given that mapping was an experiment, it was not surprising that the ideal was not realized in these initial two workshops.
Three maps from the workshops illustrate the map making that resulted. Figure 1, by a Finnish ecologist I will call “E,” was the most orderly of the maps, having been streamlined and redrawn on a computer. As such it does not do justice to the real-time experience of its production during an actual workshop. Indeed, when viewed on their own all the maps appear schematic; valuable history, emphasis, and substance were added when the mapmakers presented their maps to other workshop participants.

Figure 1 Redrawn outline of E’s map about how to conduct research on the ecology of carabid beetles in the city of Helsinki (from Taylor and Haila 1989)

The central issue on E’s map is very broad, namely, to understand the ecology of carabid beetles living in the leaf litter under trees in urban environments. On the map below this issue are many theoretical and methodological sub-problems, which reflect the conventional emphasis in science on refining one’s issue into specialized questions amenable to investigation. Above the central issue are various background considerations, larger and less specific issues, situations, and assumptions that either motivated work on the central issue or were related to securing support for the research. E’s research alone would not transform the urban public into recognizing that “nature is everywhere—including in the cities,” but by combining the upward and downward connections, he reminded himself that work on the background issues, not only refining a working hypothesis, would be necessary to be able to keep doing his research.
In narrating his map, E mentioned some additional history. Many of the ecologists with whom he collaborated had been studying a forest area, but the group lost their funding when the Forestry Department asserted that forest ecology was their own domain. It did not matter that animals are barely mentioned in the ecology of forestry scientists. The ecologists self-consciously, but of necessity, turned their attention to the interconnected patches of forest that extend almost to the center of Helsinki, and explored novel sources of funding and publicity, including a TV documentary. The upward connections were thus a recurrent, if not persistent, influence on E as he defined his specific research questions.

Figure 2 Extract from R’s map concerning research on the peasant economics and politics and tropical forest destruction in Mexico (from Taylor 1990)

Historical background depicted in a narrative format is more evident in a large map by “R,” a Mexican who had come to specialize in the economic and agronomic dynamics which lead to impoverishment of peasants, their migration into forest areas, and subsequent clearing of those forests. Figure 2 is only one section of that map. Although radically different from E’s redrawn map, R’s map also highlighted simultaneous issues of building the disciplinary and collaborative context in which to pursue his many concerns. As a biologist he wanted to stem rainforest destruction; as a political activist he wanted to reduce rural poverty; and as a resource economics graduate student in the U.S. he needed to frame technical questions that could be answered.

Figure 3 M’s map of his research into ecological degradation and impoverishment among nomadic pastoralists in West Africa (from Taylor 1990)

In Figure 3 “M,” an American studying land degradation and impoverishment among nomadic pastoralists in West Africa, depicted a more conventional conception of research. Questions form the bulk of the map and are separated from methods—the strip along the bottom. M omitted the movements, arrangements, alliances, and negotiations he built in order to monitor milk production, elicit from the herders rules governing herd movement, assess herd ownership, measure the effect of grazing on pasture growth, complete surveys to “ground truth” satellite images, and so on. M’s map also located him in his remote field area, and omitted the audiences in the U.S.—sponsors and critics alike—for his current and future research. In short, notwithstanding the guidelines I had given to mapmakers, M included the situation he studied and left himself out.
To what extent, recalling the goals of mapping workshops, did the workshops lead participants to “clarify and filter the connections and to reorganize their maps”? It took considerable time to prepare maps, and the mapmakers did not devote more time to redraw their maps in response to interaction during the mapping sessions. M, for example, did not redraw his map to include his own context. To what extent then did researchers realize the ideal of “self-consciously modify[ing] their social situations and their research together, perhaps in collaborations formed among the workshop participants”? Several participants, at the Helsinki workshop in particular, claimed that the mapping workshop had expanded the range of influences, both theoretical and methodological, that they would bring into planning their future work. One workshop participant commented that mapping made it impossible “simply to continue along previous lines.” Nevertheless, although the workshops provided the opportunity to link up with others around revealed affinities, no new coalitions emerged; changes in the researchers’ work were not so dramatic.

Extracted from Taylor, P.J. (2005) Unruly Complexity: Ecology, Interpretation, Engagement (U. Chicago Press), chapter 5, Part B.


Taylor (1990). “Mapping ecologists’ ecologies of knowledge.” Philosophy of Science Association 2: 95-109.

Taylor and Y. Haila (1989). “Mapping Workshops for Teaching Ecology.” Bulletin of the Ecological Society of America 70(2): 123-125.

2 thoughts on “Mapping: Can scientists become interpreters of science and bring the interpretations to bear on their science?

  1. Pingback: Political ecology—Distributed social agency « Intersecting Processes

  2. Pingback: “Democratic” control of science? | Intersecting Processes

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s