The challenge of integrating ecological dynamics into evolutionary theory VI: Five approaches

Integrating the structure and dynamics of evolution’s ecological context (see previous posts) remains a neglected project within evolutionary theory.  Nevertheless, the different approaches to theorizing ecological organization can still be read in terms of the ways that evolutionary theory fits into them, whether or not this is made explicit.  Table 1 provides a classification of five basic orientations.

Central to the first three orientations is the notion of system, which I use in the strong sense of an entity that has clearly defined boundaries and has coherent internal dynamics, dynamics that govern the system’s responses to external influences and determine its structure, stability and development over time (Taylor 1992). System in this sense can refer not only to the basic units of systems ecology, but also to the guilds and communities of community ecology.  These three orientations differ according to the relative time scales of ecological and evolutionary processes.  In contrast to viewing ecological organization as system-like, various ecologists have emphasized what I call its “unruly complexity” (Taylor 2005).  That is, organisms and processes transgress the boundaries of any unit of ecological structure, spanning levels and scales; natural categories for and reduction of the complexity are elusive; ecological structures are subject to restructuring; control and generalization are difficult.  The two non-system orientations differ according to whether this unruly complexity can be disciplined theoretically.   Table 1’s distinctions are illustrated in Taylor (2000) through a review of twentieth century theories of ecological organization.

In the next post in the series, I note Darwin’s keen awareness of the structure and dynamics of evolution’s ecological context and mention some research that follows in that tradition.

Table 1. Five orientations to theorizing ecological organization and evolution.

Focus Orientation Time scales
system (or community) system evolves as a Coherent whole Fast return to equilibrium; slow change or evolution of system
individuals in context of system Stable system Fast return to equilibrium

intermediate speed evolution of population of individuals

slow change of system

system transient, yet Regularly reoccurring Fast passing of transient context (e.g.,succession)

intermediate speed evolution of population of individuals

slow change in nature of transient context

ecological organization as not system-like Anti-Theory Relevant processes not separable into “ecological” and “evolutionary” time scales
unruly complexity can be Disciplined

Taylor, P. J. “Community” pp. 52-60 in E.F. Keller & E. Lloyd (eds.) Keywords in Evolutionary Biology, Harvard University Press, 1992
—- “From natural selection to natural construction to disciplining unruly complexity: The challenge of integrating ecology into evolutionary theory,” in R. Singh, K. Krimbas, D. Paul & J. Beatty (eds.), Thinking About Evolution: Historical, Philosophical and Political Perspectives, Cambridge: Cambridge University Press, 377-393, 2000.
—- Unruly Complexity: Ecology, Interpretation, Engagement Chicago: University of Chicago Press, 2005.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s